Home Search Collections Journals About Contact us My IOPscience

Calculated emission intensity band M_0 from localised states due to disorder in GaAs_{1-x}P_x alloys

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys.: Condens. Matter 1 7705 (http://iopscience.iop.org/0953-8984/1/41/023) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 10/05/2010 at 20:33

Please note that terms and conditions apply.

Calculated emission intensity band M_0 from localised states due to disorder in GaAs_{1-x}P_x alloys

M Oueslati[†], C Benoit à La Guillaume[‡] and M Zouaghi[†]§

† Laboratoire de spectroscopie moleculaire, Département de Physique, Faculté des sciences, Campus Universitaire Le Belvédère, 1006 Tunis, Tunisie
‡ Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris VII, Tour 23, 2 Place jussieu, 75251 Paris Cédex 05, France

Received 8 August 1988, in final form 28 February 1989

Abstract. A band of energy M_0 is observed in the photoluminescence (PL) spectra of indirect GaAs_{1-x}P_x semiconductor alloys about 10–15 meV below the free exciton line. It is attributed to localised excitons by potential fluctuation due to the composition disorder. We propose a model calculation of emission intensity, which describes the localised exciton properties. We consider that the band energy M_0 corresponds to a critical energy E_μ which plays a role analogous to a mobility edge in an exponential tail of density of states $\rho(E) = \rho_0 \exp(E/E_0)$; E < 0. Taking into account thermal excitation above E_μ and the distribution of zero phonon radiative recombination rate W_0 , we can model in a realistic way the evolution of PL decay as a function of composition, temperature and excitation power.

1. Introduction

Exciton localisation effects induced by a fluctuating random alloy potential in the indirect band-gap alloy $GaAs_{1-x}P_x$ have been studied by several authors [1–4]. We have shown [1, 2] that PL spectra of indirect band-gap alloys $GaAs_{1-x}P_x$ at low temperature ($T \approx 2 \text{ K}$) and very low excitation power ($\approx 40 \text{ mW cm}^{-2}$) are dominated by the zero-phonon localised exciton band (energy M_0) and its LA phonon replica (energy M_1) (figure 1). The M_0 band corresponds to radiative recombination of localised excitions with a density of states usually approximated by an exponential [1, 2, 5, 6]: $\rho = \rho_0 \exp(E/E_0)$. The relaxation of momentum conservation for these weakly localised indirect excitons is due to the effect of the alloy random potential on the radiative matrix elements [7].

Time-resolved studies [2] of resonant Raman scattering (RRS) and resonant photoluminescence (RPL) on the M_0 band provided a clear discrimination between nonresonant Raman processes (TO^Γ, LO^Γ) and processes resonating on localised exciton states. The increase of the lifetime (1–10 μ s) when probing deeper states in the tail of localised excitons is due to a competition between essentially radiative recombination at a constant rate W_0 (see appendix) and energy transfer at a rate $W_{TR}(E)$ towards tail states. The position of the localised emission band is fixed by E_{μ} where $W_{TR}(E = E_{\mu}) = W_0$.

§ While writing the present paper, we have learned of the death of Professor M Zouaghi. We dedicate this work to him.

Figure 1. Luminescence spectrum of $GaAs_{1-x}P_x$ at T = 2 K and for excitation power P =40 mW cm⁻²: (a) x = 0.51, (b) x = 0.52, (c) x =0.56, (d) x = 0.61, (e) x = 0.85. The band of energy M_1 is the LA phonon replica of that of energy M_0 .

Figure 2. Schematic representation of excitonic transitions.

Due to mixing of X and Γ states by random potential, the decay of the emission intensity is nonexponential. The distribution of decay rates was given as $P(W_0) = \langle W_0 \rangle^{-1} \exp(-W_0/\langle W_0 \rangle)$; where $\langle W_0 \rangle$ is the mean phononless radiative rate. The one-phonon radiative decay rates W_1 involving momentum-conserving phonons is independent of the degree of disorder since it is not sensitive to the mixing of X and Γ states.

In this paper, we propose a model calculation of emission intensity of the luminescence bands M_0 and M_1 studied in [1, 2].

2. Model calculation

2.1. Integrated emission intensity

The integrated emission intensity of the phononless band coming from localised states in the tail can be approximate by the following expression:

$$I(M_0) \sim \int_0^\infty \int_{-\infty}^0 W_0 P(W_0) \rho(E) f(E, W_0, T, t) \, \mathrm{d} W_0 \, \mathrm{d} E \tag{1}$$

where W_0 is the zero-phonon radiative recombination rate. Its statistical distribution was given as [7]: $P(W_0) = \langle W_0 \rangle^{-1} \exp(-W_0 / \langle W_0 \rangle)$; where $\rho(E)$ is the localised density of states, usually approximated by an exponential: $\rho(E) = \rho_0 \exp(E/E_0)$, and $f(E, W_0, T, t)$ is the occupation probability of the states at energy E and at the time t. The function f satisfies the rate equation (figure 2)

$$df/dt = W_{p}(1-f) - \{W_{0} + W_{1} + W_{e} \exp[(E - E_{\mu})/kT]\}f$$
(2)

where W_p is the pump rate. The rate of phonon assisted process W_1 does not depend on the degree of disorder. W_e is the thermal excitation rate. (E_{μ} will be defined in § 2.3.)

2.1.1. Steady state case: df/dt = 0. Equation (2) gives

$$f(E, W_0, T) = B/(B + W_0/\langle W_0 \rangle + \langle R_0 \rangle + \langle R_e \rangle)$$
(3)
where $B = W_p/\langle W_0 \rangle$; $\langle R_0 \rangle = W_1/\langle W_0 \rangle$, $\langle R_e \rangle = (W_e/\langle W_0 \rangle) \exp[(E - E_\mu)/kT]$ and
 $\langle W_0 \rangle \sim \int_0^\infty W_0 P(W_0) \, \mathrm{d} W_0.$

For very low temperatures, at which $\exp[(E - E_{\mu})/kT] \ll 1$, the zero-phonon integrated emission intensity is given by

$$I(M_0) \sim \int_0^\infty \frac{BW_0 \exp(-W_0/\langle W_0 \rangle)}{\langle W_0 \rangle (B + \langle R_0 \rangle + W_0/\langle W_0 \rangle)} \,\mathrm{d} \, W_0. \tag{4}$$

Equation (4) can be written as

$$I(M_0) \sim B\langle W_0 \rangle \,\mathrm{e}^y \left(\mathrm{e}^{-y} - y \int_y^\infty \frac{\mathrm{e}^{-V}}{V} \,\mathrm{d}\,V \right) \tag{5}$$

with $y = B + \langle R_0 \rangle$ and $V = (W_0 / \langle W_0 \rangle) + B + \langle R_0 \rangle$. For y > 0, the exponential integral has the following form [8]:

$$I(y) = \int_{y}^{\infty} \frac{e^{-V}}{V} dV = E_{1}(y)$$

$$E_{1}(y) = -\gamma - \log y - \sum \frac{X^{n}}{nn!} \qquad y > 0$$
(6)

$$E_1(y) = e^y \frac{0.711093}{(y+0.415775)} + \frac{0.278518}{(y+2.29428)} + \frac{0.010389}{(y+6.2900)} \qquad y > 10$$
(7)

where $\gamma = 0.5772 \dots$ is Euler's constant.

The zero-phonon integrated emission $I(M_0)$ is given by

$$I(M_0) \sim B\langle W_0 \rangle \,\mathrm{e}^{y} [1 - y E_1(y)].$$

Using the same procedure used for deriving $I(M_0)$, the one-phonon integrated emission intensity is described by

$$I(M_1) \sim \int_0^\infty \int_{-\infty}^0 W_1 P(W_0) \rho(E) f(E, W_0, T) \, \mathrm{d} W_0 \, \mathrm{d} E$$
$$I(M_1) \sim B W_1 y \, \mathrm{e}^y \, E_1(y).$$

The calculated ratio of $I(M_1)$ and $I(M_0)$ is given by

$$R = I(M_1)/I(M_0) = \langle R_0 \rangle y E_1(y) / [1 - y E_1(y)].$$
(8)

We present in figure 3, the calculated ratio $R = I(M_1)/I(M_0)$, using equation (8) and

Figure 3. Intensity ratio $R = I(M_1)/I(M_0)$ as a function of excitation power for different compositions x: curves A, x = 0.85; curves B x = 0.61; curves C, x = 0.56; curves D, x = 0.52; curves E, x = 0.51. (a) experimental curves; $P_0 \approx 10 \text{ W cm}^{-2}$, T = 5 K. (b) calculated curves.

experimental values of R, versus the excitation power represented by B, for different values of $\langle R_0 \rangle$ given in table 1. Note that at y = 10, the two parts of the curve obtained by using equations (6) and (7) link smoothly. R increases with increasing composition x and presents two stages with a maximum at lower B values and a minimum at higher B values.

2.1.2. Pulsed excitation case. We first deal with out of saturation case, where B is relatively small. We consider a laser pulse defined as

$$B = \begin{cases} 0 & t \leq -\tau \\ B & -\tau < t \leq 0 \\ 0 & t > 0 \end{cases}$$

The coupled rate equation (2) can be written as

$$df/dt = \langle W_0 \rangle [B/(B+A) - f](B+A)$$
(9)

with $A = W_0 / \langle W_0 \rangle + \langle R_0 \rangle + \langle R_e \rangle$.

The solution of equation (9) is

$$f = f_0 e^{-A\langle W_0 \rangle t} \tag{10}$$

where

$$f_0 = [B/(B+A)]\{1 - \exp[-\langle W_0 \rangle (B+A)\tau]\}.$$
 (11)

Using the expression (10) for $f(E, W_0, B, t, \tau)$, and taking into account

Figure 4. Time dependence of the intensity of the M_0 band in GaAs_{1-x}P_x: curve A, x = 0.85; curve B, x = 0.61; curve C, x = 0.56; curve D, x = 0.52; curve E, x = 0.51. (a) calculated curves. (b) experimental curves at T = 2 K and P = 10 W cm⁻².

Figure 5. Time dependence of the intensity of the M_0 band in GaAs_{0.15}P_{0.85} for different excitation powers. (a) calculated curves: curve A, $B = 10^{-1} P$; curve B, $B = 10^{-2} P$; curve C, $B = 10^{-3} P$. (b) experimental curves, T = 2 K, $P_0 = 10 W \text{ cm}^{-2}$: curve A, $P = 10^{-3} P_0$; curve B, $P = 10^{-2} P_0$; curve C, $P = 10^{-1} P_0$; curve D, $P = P_0$.

 $\exp[(E - E_{\mu})/kT)] \ll 1$, the integrated emission intensity without phonon assistance (1) is then given by

$$I(M_0) \sim \frac{B e^{-W_1 t}}{\langle W_0 \rangle} \int_0^\infty \frac{W_0 \exp[-(1 + \langle W_0 \rangle t)(W_0 / \langle W_0 \rangle)]}{(B + W_0 / \langle W_0 \rangle + \langle R_0 \rangle)} dW_0$$
(12)

which can be written as

$$I(M_0) \sim \frac{B\langle W_0 \rangle}{(1 + \langle W_0 \rangle t)} e^{-W_1 t} \left(e^{-y} - y \int_y^\infty \frac{e^{-V}}{V} dV \right) e^y$$
(13)

with $V = (B + W_0 / \langle W_0 \rangle + \langle R_0 \rangle)(1 + \langle W_0 \rangle t)$ and $y = (B + \langle R_0 \rangle)(1 + \langle W_0 \rangle t)$.

Using the solution of exponential integration given above, equation (13) becomes

$$I(M_0) \sim [B\langle W_0 \rangle / (1 + \langle W_0 \rangle t)] e^{-W_1 t} [1 - y e^y E_1(y)].$$
(14)

The same calculation gives the one-phonon integrated emission intensity

$$I(M_1) \sim BW_1 e^{-W_1 t} y e^y E_1(y).$$
(15)

Equations (14) and (15) show that the decay of calculated intensities $I(M_0)$ and $I(M_1)$ is non-exponential. As it has been observed experimentally [1], the decay of $I(M_0)$ and $I(M_1)$ is faster when the composition goes from x = 0.85 to x = 0.51 (figure 4). It

Table 1.

Figure 6. Intensity ratio $R = I(M_1)/I(M_0)$ as a function of delay time in GaAs_{1-x}P_x: A, x = 0.85; B, x = 0.52 at T = 2 K and $P_0 = 10$ W cm⁻².

x	0.51	0.52	0.56	0.61	0.85
$W_1 ({ m ms}^{-1})$	95	56	47	36	34
$\langle W_0 \rangle$ (ms ⁻¹)	284	160	131	83	57
$\langle R_0 \rangle$	0.33	0.35	0.36	0.43	0.6

becomes even faster with increasing excitation power and is still non-exponential at saturation corresponding to high power excitation B (figure 5).

We now deal with the situation at saturation, for which $B \ge \langle R_0 \rangle$ and $B \ge (W_0 / \langle W_0 \rangle)$. Here equation (12) becomes

$$I(M_0) \sim \left(e^{-W_1 t} / \langle W_0 \rangle \right) \int_0^\infty W_0 \exp\left[-(1 + \langle W_0 \rangle t) (W_0 / \langle W_0 \rangle) \right] dW_0$$
$$\sim e^{-W_1 t} / (1 + \langle W_0 \rangle t)^2.$$
(16)

Under the same conditions, we get

$$I(M_1) \sim \langle R_0 \rangle \,\mathrm{e}^{-W_1 t} / (1 + \langle W_0 \rangle t) \tag{17}$$

The expressions for $I(M_0)$ and $I(M_1)$ given by equations (16) and (17), which show nonexponential decay, are similar to those calculated in [7]. Using equations (16) and (17), we find a linear dependence on time for the calculated ratio $R = I(M_1)/I(M_0)$

$$R = W_1 t + W_1 / \langle W_0 \rangle = W_1 t + \langle R_0 \rangle. \tag{18}$$

Figure 6 shows experimental values of R for x = 0.85. The fitting curves using equation (18) gives experimental measurements of $\langle W_0 \rangle$ and W_1 represented in table 1, for several values of x.

 $\langle W_0 \rangle$ becomes important compared to W_1 as x goes to 0.51. In this case, the Γ and X bands are close together, favouring the zero-phonon radiative recombination processes. The increase of W_1 and $\langle W_0 \rangle$ when x decreases reflects the fact that W_1 varies as $[E(\Gamma) - E(\mathbf{X})]^{-2}$, and $\langle W_0 \rangle$, which is affected by disorder, varies as $x(1-x)[E(\Gamma) - E(\mathbf{X})]^{-2}$.

Figure 7. Time dependence of the intensity of the M_0 band in GaAs_{0.44}P_{0.56} for different temperatures *T*. (*a*) calculated curves: curve A, T = 0.1 K; curve B, T = 2 K; curve C, T = 4 K; curve D, T = 6 K. (*b*) experimental curves: curve A, T = 4.3 K; curve B, T = 5.2 K; curve C, T = 6.4 K, all with P = 10 W cm⁻².

2.2. Temperature dependence of M_0 decay

When T increases, the condition $\exp[(E - E_{\mu})/kT] \le 1$ is no longer true for useful values of E. In this case, the rate equation was integrated numerically. In figure 7, we show the time decay of M_0 emission at four different temperatures. This figure has to be compared with figure 8 of [4]. A very good fit was obtained, using $\langle W_0 \rangle$ and W_1 values already determined (table 1). So, the variation of the decay with temperature can be understood only in terms of thermal excitation of the tail states above the energy E_{μ} where $\tau_t \ge \tau_r$, where τ_t and τ_r are the transfer and radiative relaxation times, respectively. That T-dependence is found to be quite sensitive to the value of E_0 .

2.3. Line shape of emission band M_0

For the model calculation, we assume that for each emitted photon energy E in the band M_0 the intensity can be written as

$$I(E) \sim \rho(E) f(E, T, t). \tag{19}$$

In the steady case equation (13) becomes

$$I(E) \sim \rho_0 \exp(E/E_0) / \{1 + a_R + a_e \exp[(E - E_\mu)/kT]\}$$
(20)

with $a_R = W_0 + W_1/W_p$ and $a_e = W_e/W_p$.

The maximum of the band M_0 corresponding to (dI/dE) = 0 gives an approximate solution

$$E_{\max} = -nKT + E_{\mu}.$$
(21)

K is the Boltzmann constant and E_{μ} corresponds to the energy position of the band M_0 at T = 0 K. We have $n \approx 8$ [1].

Figure 8. Calculated band shape of M_0 at different temperatures *T*. E_{μ} is taken as the energy origin.

Combining (20) and (21) with (dI/dE) = 0, we find that a_e has the following form:

$$a_e = bT$$
 $b = (Ke^n/E_0).$

The intensity I(E) becomes

$$I(E) \sim \rho_0 \exp(E/E_0) / \{1 + bT \exp[(E - E_\mu)/kT]\}.$$
(22)

Figure 8 shows calculated M_0 band-shape using equation (22) for different values of the temperature T. We have used experimental values [1, 2]: $E_0 = 3.2 \text{ meV}$, n = 8 corresponding to the composition x = 0.51 and $k = 0.086 \text{ meV K}^{-1}$. E_{μ} is taken as the energy origin. As shown by figure 7 and reported by our experimental results [1], the position of the M_0 band shifts to lower energy with increasing T.

3. Conclusion

The calculation model of the emission band intensity $I(M_0)$ from localised exciton states in an exponential tail reproduces our previous experimental results [1, 2] and describes very well the evolution of $I(M_0)$ with varying experimental parameters. These parameters are temperature, excitation power, time and composition x of alloys. The approximations made are justified if one considers the orders of magnitude of the different experimental parameters.

Appendix

The wavefunction of a weakly localised exciton (localisation energy smaller than exciton Rydberg) can be written

$$\Phi = \sum_{k} A_{k} \psi_{\text{FE},k} \tag{A1}$$

where $\psi_{\text{FE},k}$ is the wave function of a free exciton of wavevector k in its ground state. In terms of electron and the hole states φ_v and φ_c , $\psi_{\text{FE},k}$ can be written

$$\psi_{\text{FE},k} = \sum_{l} B_{k,l} \varphi_{vl} \varphi_{c,l+k}.$$
(A2)

In an indirect gap material, no-phonon optical transitions are treated by second-order perturbation, involving a vertical optical transition, and a scattering by potential fluctuations in the alloy, modelled by $V = \Sigma_j V(\mathbf{R}_j)$. In this approximation, the matrix element for a no-phonon process reads:

$$H_{\text{no-phonon}} = \sum_{j} \sum_{k} A_{k} \sum_{l} B_{kl} \langle \varphi_{v,l} | H_{\text{opt}} | \varphi_{c,l} \rangle \langle \varphi_{v,l} | V_{j} | \varphi_{c,l+k} \rangle / \Delta.$$
(A3)

Assuming slow variation of $\mathbf{M}_0 = \langle \varphi_{v,l} | H_{opt} | \varphi_{c,l} \rangle$ and Δ , and writing $\langle \varphi_{v,l} | V_j | \varphi_{c,l+k} \rangle = V_k e^{i k \cdot R j}$, we get

$$M_{\text{no-phonon}} = \frac{M_0}{\Delta} \sum_{j,k} A_k V_k e^{ik \cdot R_j} \sum_k B_{kl}.$$
 (A4)

Noting that $\sum B_{kl} = F_{FE,k}(0)$, the envelope function of the free exciton and considering that the perturbing potentials are short $(V_k = V)$, we arrive at

$$M_{\text{no-phonon}} = \frac{M_0}{\Delta} V F_{\text{FE}}(0) \sum_{jk} A_k e^{ik \cdot R_j}$$
(A5)

When taking $|M_{\text{no-phonon}}|^2$, the term coming from $|\Sigma_{jk}A_k e^{k \cdot R_j}|^2$ will take a wide distribution of values depending on the particular distribution of R_j . Writing it as

$$\sum_{jklq} A_k A_q^* e^{i(k \cdot R_j - q \cdot B_l)}$$

one can notice that its mean value comes from the terms such that j = l and k = q, namely

$$\sum_{jk} A_k A_k^* \sim N. \tag{A6}$$

Since $\sum_k A_k A_k^* = 1$, one gets

$$\langle |M_{\text{no-phonon}}|^2 \rangle = (\mathbf{M}_0^2 \ \Delta) V^2 |F_{\text{FE}}(0)|^2 N.$$
(A7)

So, the mean value $\langle W_0 \rangle$ does not depend upon the exciton localisation provided the localisation is weak (equation A1).

In the case of phonon-assisted transition, it can be shown that the coherence in the sum over k in equation (A3) is lost, because for each term, a different phonon is emitted.

References

 Oueslati M, Zouaghi M, Pistol M E, Samuelson L, Grimmeiss H G and Balkanski M 1985 Phys. Rev. B 32 8220

7714 M Oueslati et al

- [2] Oueslati M, Benoit à la Guillaume C and Zouaghi M 1988 Phys. Rev. B 37 3037
- [3] Shui Lai and Klein M V 1980 Phys. Rev. Lett. 44 1087
- [4] Shui Lai and Klein M V 1984 Phys. Rev. B 29 3217
- [5] Cohen E and Sturge M D 1982 Phys. Rev. B 25 3828
- [6] Permogorov S, Reznitski A, Verbin S, Müller G O, Flögel P and Nikiforova M 1982 Phys. Status Solidi b 113 589
- [7] Klein M V, Sturge M D and Cohen E 1982 *Phys. Rev.* B **25** 4331 Depending upon the exact localisation of the X minimum, two different laws for P(W) are predicted. In practice, it seems difficult to discriminate between these two cases just from experimental data related to luminescence decay and ratio $R = I(M_1)/I(M_0)$.
- [8] Abramovitz M and Stegun I A Handbook of Mathematical Functions (expression 5.1.11 on p 229 for equation (6) and asymptotic form of $E_1(y)$ given on p 250 for equation (7))