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Abstract. A band of energy M O  is observed in the photoluminescence (PL) spectra of indirect 
GaAs, -,P,semiconductor alloys about 10-15 mevbelowthe freeexciton line. It isattributed 
to localised excitons by potential fluctuation due to the composition disorder. We propose 
a model calculation of emission intensity, which describes the localised exciton properties. 
We consider that the band energy M,) corresponds to a critical energy E,, which plays a role 
analogous to a mobility edge in an exponential tail of density of states p(E)  = po exp(E/Eo); 
E < 0. Taking into account thermal excitation above E,, and the distribution of zero phonon 
radiative recombination rate WO, we can model in a realistic way the evolution of PL decay 
as a function of composition, temperature and excitation power. 

1. Introduction 

Exciton localisation effects induced by a fluctuating random alloy potential in the indirect 
band-gap alloy GaAs, -,P, have been studied by several authors [ 1-41. We have shown 
[l, 21 that PL spectra of indirect band-gap alloys GaAs,-,P, at low temperature ( T  - 
2 K) and very low excitation power (-40 mW cm-*) are dominated by the zero-phonon 
localised exciton band (energy M O )  and its LA phonon replica (energy M , )  (figure 1). 
The M O  band corresponds to radiative recombination of localised excitions with a density 
of states usually approximated by an exponential [1, 2 , 5 , 6 ] :  p = poexp(E/EO). The 
relaxation of momentum conservation for these weakly localised indirect excitons is due 
to the effect of the alloy random potential on the radiative matrix elements [7]. 

Time-resolved studies [2] of resonant Raman scattering (RRS) and resonant photo- 
luminescence (RPL) on the MO band provided a clear discrimination between non- 
resonant Raman processes R TO^,  LO^) and processes resonating on localised exciton 
states. The increase of the lifetime (1-10 pus) when probing deeper states in the tail of 
localised excitons is due to a competition between essentially radiative recombination 
at a constant rate WO (see appendix) and energy transfer at a rate WT,(E) towards tail 
states. The position of the localised emission band is fixed by E, where WTR(E = E p )  = 

§ While writing the present paper, we have learned of the death of Professor M Zouaghi. We dedicate this 
work to him. 
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Figure 1. Luminescence spectrum of GaAs, - ,P, 
at T =  2 K and for excitation power P = transitions. 
40 mW cm-*: (a) x = 0.51, ( b )  x = 0.52. (c) x = 

0.56. (d) x = 0.61, ( e )  x = 0.85. The band of 
energy M I  is the LA phonon replica of that of 
energy MO.  

Figure 2. Schematic representation of excitonic 

Due to mixing of X and r states by random potential, the decay of the emission 
intensity is nonexponential. The distribution of decay rates was given as P(Wo) = (WO}-] 
exp( -Wo/(Wo)); where (WO) is the mean phononless radiative rate. The one-phonon 
radiative decay rates W1 involving momentum-conserving phonons is independent of 
the degree of disorder since it is not sensitive to the mixing of X and r states. 

In this paper, we propose a model calculation of emission intensity of the lumi- 
nescence bands M O  and M ,  studied in [ 1,2] .  

2. Model calculation 

2.1. Integrated emission intensity 

The integrated emission intensity of the phononless band coming from localised states 
in the tail can be approximate by the following expression: 

where W O  is the zero-phonon radiative recombination rate. Its statistical distribution 
was given as [7]: P(WO) = (WO)-' exp(-W,/(W,)); where p(E) is the localised den- 
sity of states, usually approximated by an exponential: p ( E )  = p0 exp(E/EO), and 
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f ( E ,  WO, T ,  t )  is the occupation probability of the states at energy E and at the time t .  
The function f satisfies the rate equation (figure 2) 

df/dt = Wp(l  - f) - {WO + W1 + W e  exp[(E - E,) /kT]} f  (2) 
where W, is the pump rate. The rate of phonon assisted process W1 does not depend on 
the degree of disorder. We is the thermal excitation rate. (E ,  will be defined in 0 2.3.) 

2.1.1. Steady state case: df /d t  = 0. Equation (2) gives 

f(E, WO, T )  = B / ( B  + Wo/(WO> + (RO) + (Re) )  (3) 

where B = Wp/W0); (RO) = Wl/WO), (Re) = We/(WJ) exp[(E - E,)/kTI and 

(WO) - jox WOPWO) d WO. 

For very low temperatures, at which exp[(E - E,) /kT]  1, the zero-phonon inte- 
grated emission intensity is given by 

Equation (4) can be written as 

withy = B + (R,) and V = (WO/(WO)) + B + (Ro). For y > 0, the exponential integral 
has the following form [8]: 

m e-v  
I (Y )  = j - p V =  E l ( Y )  

Y 

(6) 

0.711 093 0.278518 0.010389 
( y  + 0.415775) ( y  + 2.29428) ( y  + 6.2900) + y > 10 (7) E l ( y )  = eY 

where y = 0.5772 . . . is Euler's constant. 
The zero-phonon integrated emission f(Mo) is given by 

I ( M , )  - BW,) eY[1 - YE,(Y) l .  
Using the same procedure used for deriving Z(M,), the one-phonon integrated 

emission intensity is described by 

I(M1) - jX lo W,P(W, )P(E) f (E ,  WO 2 T )  d WO d E  
0 --m 

f(M1) - BW1 Y ey El ( Y ) .  

R = W W W o )  = (RO)YEl(Y)/P - Y E l ( Y ) l .  

The calculated ratio of f ( M l )  and Z(M,) is given by 

(8) 
We present in figure 3, the calculated ratio R = Z ( M l ) / l ( M o ) ,  using equation (8) and 
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Figure 3. Intensity ratio R = I ( M , ) / I ( M o )  

0.21 as a function of excitation power for dif- 
ferent compositions x :  curves A, x = 0.85: 

Pump ra te ,  B T = 5 K. ( b )  calculated curves 

experimental values of R ,  versus the excitation power represented by B ,  for different 
values of (R,) given in table 1. Note that at y = 10, the two parts of the curve obtained 
by using equations (6) and (7)  link smoothly. R increases with increasing composition x 
and presents two stages with a maximum at lower B values and a minimum at higher B 
values. 

2.1.2. Pulsed excitation case. We first deal with out of saturation case, where B is 
relatively small. We consider a laser pulse defined as 

ts  --z 

- t < t S O  

t>O 
The coupled rate equation (2) can be written as 

withA = W,/(W,) + (R,) + (Re). 
The solution of equation (9) is 

df/dt=(Wo)[B/(B + A )  - f l ( B + A )  

f = f ,  e -A(Wo)' 

(9) 

where 

f o  = [B / (B  + A)1{1 - exp[-Wo)(B + A)z I ) .  (11) 
Using the expression (10) for f ( E ,  WO,  B, t ,  z), and taking into account 



Photoluminescence spectra of GaAs, -xPx 7709 

5-1- 

lo-’ 

0.3 1.3 2.3 
t ( P S I  

Figure 4. Time dependence of the intensity of the 
M O  band in GaAs,_,P,: curve A, x = 0.85; curve 
B,x = 0.61;curveC,x = 0.56;curveD,x = 0.52; 
curve E, x = 0.51. (a) calculated curves. (b)  
experimental curves at T =  2 K  and P =  
10 W cm-*. 
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Figure 5. Time dependence of the intensity of the 
M O  band in GaAs0,,SPo,8s for different excitation 
powers. (a) calculated curves: curve A ,  B = 
lo-’ P;  curve B, B = P. 
( b )  experimental curves, T =  2 K ,  Po = 
10 W cm-2: curve A,  P = Po; curve B, P = 

P;  curve C ,  B = 

Po; curve C, P = lo-’ Po; curve D,  P = Po. 

exp[(E - E,) /kT)]  
is then given by 

1, the integrated emission intensity without phonon assistance (1) 

which can be written as 

with V = ( B  + Wo/(Wo) + @,))(I + (W&) andy = ( B  + &))(I + ( W O ) ~ ) .  
Using the solution of exponential integration given above, equation (13) becomes 

W O )  - [B(Wo>/(l + (W0)l)l e-W1t[l - Y eYE,(y)l. 

Z(M,)  - BW, e -Wl tyeY E,(y).  

(14) 

(15) 

The same calculation gives the one-phonon integrated emission intensity 

Equations (14) and (15) show that the decay of calculated intensities Z(Mo) and Z(MJ 
is non-exponential. As it has been observed experimentally [l] ,  the decay of Z(Mo) and 
Z(M,) is faster when the composition goes from x = 0.85 to x = 0.51 (figure 4). It 
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Table 1. 

Figure 6 .  Intensity ratio R = Z ( M l ) / I ( M n )  as a 
function of delay time in GaAs, -xPx: A, x = 0.85; 
B,  x = 0.52 at T = 2 K and Po = 10 W cm-2, 

X 0.51 0.52 0.56 0.61 0.85 
W1 (ms-I) 95 56 47 36 34 
(WO) (ms-7 284 160 131 83 57 
(R")  0.33 0.35 0.36 0.43 0.6 

becomes even faster with increasing excitation power and is still non-exponential at 
saturation corresponding to high power excitation B (figure 5). 

We now deal with the situation at saturation, for which B 9 (R,) and B 9 (Wo/(W0)). 
Here equation (12) becomes 

IW,) - (e-Wlt/(wo)) lm WO exp[-(l + (w0)0(Wo/(Wo))l dW, 
0 

- e-wlf/(l  + (Wo)t)2.  (16) 

Under the same conditions, we get 

W l )  - (Ro) e-wlr / ( l  + (W,)t) (17) 

The expressions for Z(M,) and Z(M,) given by equations (16) and (17), which show non- 
exponential decay, are similar to those calculated in [7]. Using equations (16) and (17), 
we find a linear dependence on time for the calculated ratio R = Z(Ml)/Z(Mo) 

R = W,t  + Wl/(Wo) = Wlt + (R,,). (18) 

Figure 6 shows experimental values of R for x = 0.85. The fitting curves using 
equation (18) gives experimental measurements of (WO) and W1 represented in table 1, 
for several values of x.  

(WO) becomes important compared to WI asx goes to 0.51. In this case, the r and X 
bands are close together, favouring the zero-phonon radiative recombination processes. 
The increase of W1 and (WO) when x decreases reflects the fact that W1 varies as [ E ( T )  - 
E ( X ) ] - 2 ,  and (W,), which is affected by disorder, varies asx(1 - x)[E(T) - E ( X ) ] - 2 .  
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Figure 7. Time dependence of the intensiv sf the M O  band in GaAso 44Po 56 for different 
temperatures T.  (a)  calculated curves: curve A ,  T = 0.1 K;  curve B,  T = 2 K; curve C, T = 
4 K;  curve D, T = 6 K. ( b )  experimental curves: curve A,  T = 4.3 K;  curve B,  T = 5.2 K; 
curve C, T = 6.4 K, all with P = 10 W cm-*. 

2.2. Temperature dependence of MO decay 

When T increases, the condition exp[(E - E,)/kT] 1 is no longer true for useful 
values of E. In this case, the rate equation was integrated numerically. In figure 7 ,  we 
show the time decay of M O  emission at four different temperatures. This figure has to be 
compared with figure 8 of [4]. A very good fit was obtained, using (WO) and W1 values 
already determined (table 1). So, the variation of the decay with temperature can be 
understood only in terms of thermal excitation of the tail states above the energy 
E, where z, % zr, where z, and tr are the transfer and radiative relaxation times, respect- 
ively. That T-dependence is found to be quite sensitive to the value of Eo. 

2.3. Line shape of emission band MO 
For the model calculation, we assume that for each emitted photon energy E in the band 
M O  the intensity can be written as 

Z(E) - P(E)f ( E ,  T ,  4. 

I (E)  - PO exp(E/EO)/{1 f a R  + a c  exp[(E - Ep) /kT])  

(19) 

(20) 

In the steady case equation (13) becomes 

with aR = WO + W,/Wp and a,  = We/Wp. 

solution 
The maximum of the band M O  corresponding to (dZ/dE) = 0 gives an approximate 

E,,, = -nKT + E,,. (21) 

K is the Boltzmann constant and E, corresponds to the energy position of the band M O  
at T = 0 K. We have n = 8 [l]. 
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Figure 8. Calculated band shape of M O  at different 
temperatures T. E, is taken as the energy origin. 

Combining (20) and (21) with (dl /dE) = 0, we find that a, has the following form: 

a? = b T  b = (Ke"/Eo).  

The intensity Z(E) becomes 

Figure 8 shows calculated MO band-shape using equation (22) for different values of 
the temperature T .  We have used experimental values [l, 21: Eo = 3.2 meV, n = 8 
corresponding to the composition x = 0.51 and k = 0.086 meV K-I. E, is taken as the 
energy origin. As shown by figure 7 and reported by our experimental results [ 11, the 
position of the MO band shifts to lower energy with increasing T .  

3. Conclusion 

The calculation model of the emission band intensity Z(Mo) from localised exciton states 
in an exponential tail reproduces our previous experimental results [l, 21 and describes 
very well the evolution of Z(Mo) with varying experimental parameters. These par- 
ameters are temperature, excitation power, time and composition x of alloys. The 
approximations made are justified if one considers the orders of magnitude of the 
different experimental parameters. 
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Appendix 

The wavefunction of a weakly localised exciton (localisation energy smaller than exciton 
Rydberg) can be written 

where tpFE,k  is the wave function of a free exciton of wavevector k in its ground state. In 
terms of electron and the hole states qu and qc, can be written 

q F E , k  = B k , l q u l q c , l + k .  
I 

In an indirect gap material, no-phonon optical transitions are treated by second-order 
perturbation, involving a vertical optical transition, and a scattering by potential fluc- 
tuations in the alloy, modelled by V = ZjV(Rj) .  In this approximation, the matrix element 
for a no-phonon process reads: 

AssumingslowvariationofMO = ( q u , r / H o p , I  q C , 3  and A, andwriting(pl,,[l v//q)c,l+k) = 
v k  eikeRj, we get 

Noting that Z Bkl = &E,&@), the envelope function of the free exciton and con- 
sidering that the perturbing potentials are short ( v k  = V ) ,  we arrive at 

When taking /Mno.pbononlz, the term coming from /ZikAk ek'Ri/2 will take a wide distri- 
bution of values depending on the particular distribution of Rj.  Writing it as 

E A  A L  ei(k.Rj-q.B1 
k q  

jklq 

one can notice that its mean value comes from the terms such that j = land k = q,  namely 

x A k A , *  - N .  
j k  

Since C k  AkA 2 = 1 ,  one gets 

(l'no-phonon = (Mi A ) V 2 1 F F E ( 0 ) / 2 N *  (A71 

So, the mean value (WO) does not depend upon the exciton localisation provided the 
localisation is weak (equation Al).  

In the case of phonon-assisted transition, it can be shown that the coherence in the 
sum over kin equation (A3) is lost, because for each term, a different phonon is emitted. 
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